17³Ô¹Ï

17³Ô¹Ï OptSim for Radio-over-Fiber (RoF) in Aerospace and Defense Applications

17³Ô¹Ï OptSim is a unique fiber-optic system simulator in the market coming with a time-domain split-step (TDSS) simulation engine in addition to the more common frequency-domain split-step (FDSS) simulation engine. Since the TDSS and linear convolution require no assumptions on periodicity of the signal(s) and simulation window, unlike in FDSS-only tools, 17³Ô¹Ï OptSim users don¡¯t need to resort to any artificial restrictions on maintaining periodicity between multiple RF tones and optical frequencies. It is this ease of mixing RF and optical signals that makes 17³Ô¹Ï OptSim an ideal solution for designing and simulating civilian and aerospace & defense RF-over-Fiber applications.

Intermodulation Distortion in RF-over-Fiber Link: Schematic in OptSim
Intercept points

Intermodulation Distortion in RF-over-Fiber Link: Schematic in 17³Ô¹Ï OptSim (top) and intercept points (bottom).

Benefits

  • Makes no assumptions on periodicity of signals and noise, thereby providing ease of mixing RF and optical signals without aliasing
  • Models impact of nonlinearities, noise, jitter, crosstalk, harmonics, and complex interplay of impairments
  • Comes pre-supplied with rich libraries of electrical, RF modulators, demodulators and optical model templates
  • Delivers powerful options for design setup, Monte Carlo analyses, data visualization, plotting and management of project resources

Applications

  • Analog photonic RF-over-Fiber systems, Microwave Photonics
  • System sensitivity, linearity, dynamic range, noise-figure (NF) and inter-modulation distortion (IMD)
  • Spurious-free dynamic range (SFDR), Composite second order (CSO), Composite triple beat (CTB)
  • Carrier-to-noise ratio (CNR), Input intercept point (IIP), Output intercept point (OIP), 1-dB compression point
  • Advanced RF and optical modulation formats
  • Analog and digital fiber-optic cable TV (CATV)
  • Free-space optical systems

Application Gallery